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Abstract 

Complex surfaces and solids are produced by large-scale 
modeling and simulation activities in a variety of disci- 
plines. Productive interaction with these simulations re- 
quires that these surfaces or solids be viewable at interac- 
tive rates - yet many of these surfacedsolids can contain 
hundreds of millions of polygondpolyhedra. Interactive 
display of these objects requires compression techniques 
to minimize storage, and fast view-dependent triangula- 
tion techniques to drive the graphics hardware. In th is 
paper, we review recent advances in subdivision-surface 
wavelet compression and optimization that can be used to 
provide a framework for both compression and triangula- 
tion. These techniques can be used to produce suitable 
approximations of complex surfaces of arbitrary topology, 
and can be used to determine suitable triangulations for 
display. The techniques can be used in a variety of ap- 
plications in computer graphics, computer animation and 
visualization. 

Keywords: subdivision surfaces, wavelets, isosurfaces, 
visualization 

1 Introduction 

The advent of high-performance computing has com- 
pletely transformed the nature of most scientific and en- 
gineering disciplines, making the study of complex prob- 
lems from experimental and theoretical disciplines compu- 
tationally feasible. All science and engineering disciplines 
are facing the same problem: How to archive, transmit, vi- 
sualize, and explore the massive data sets resulting from 
modem computing, Today, when only small amounts of 
data must be processed, many researchers can accomplish 
some of these objectives on a desktop machine. But the 
“impact problems” of science and engineering typically 
require the analysis of data sets that need massive stor- 
age capability and large-scale display hardware for visu- 
alization. The exploration of truly massive data sets re- 
quires new techniques in compression, storage, transmis- 
sion, retrieval, and visualization, as the existing techniques 

for small data sets do not scale well, or not at all. A new 
approach is needed to address the interrelated problems 
of storage, visualization, and exploration of these massive 
data sets. 

Traditionally, due to smaller and simpler data sets to be 
studied, researchers have developed “in-core” visualiza- 
tion and data exploration methods that work well on small 
or medium-scale data sets. But today’s scientific and en- 
gineering problems require a different approach to address 
the massive data problems in organization, storage, trans- 
mission, visualization, exploration, and analysis. 

Terascale physics simulations are now producing tens 
of terabytes of output for a several-day run on the largest 
computer systems. An example is the Gordon Bell Prize- 
winning simulation of a Richtmyer-Meshkov instability in 
a shock-tube experiment [46], which produced isosurfaces 
of the mixing interface with 460 million unstructured tri- 
angles using conventional extraction methods. Similarly, 
the Digital Michelangelo Project [38] is generating data 
sets with 500 million data points, and in both problem ar- 
eas, billion-triangle surfaces are expected shortly. 

In the Gordon Bell isosurface case, if we use 32-bit val- 
ues for coordinates, normals and indices, then we require 
16 gigabytes for the storage of a single isosurface, and sev- 
eral terabytes for a single surface tracking through all 274 
time steps of the simulation. With the gigabyte-per-second 
read rates of current RAID storage, it would take 16 sec- 
onds to read a single surface. 

Another bottleneck occurs with high-performance 
graphics hardware. Today, the fastest commercial systems 
can effectively draw around 20 million triangles per sec- 
ond, i.e. around 1 million triangles per frame at 20 frames 
per second. To achieve interactive rates, a terabyte data set 
requires almost a thousand-fold reduction in the triangle 
count. 

Wavelet compression and viewdependent optimization 
are two powerful tools that we use to reduce the size of 
these data sets. Conversion is required to turn irregular 
extracted surfaces into a form appropriate for these algo- 
rithms (see Figure 1). 

Section 2 discusses a novel lifting procedure that gener- 
ates subdivision-surface wavelets for Catmull-Clark sub- 



Figure 1: Shrink wrapping steps (left to right): the full-resolution isosurface, the base mesh constructed from edge 
collapses, and the final shrink-wrap with subdivision-surface connectivity. 

division surfaces. Section 3 discusses the use of these 
wavelets to generate approximations to isosurfaces. We 
discuss the fitting methods in Section 4, and the remap- 
ping procedure that obtains better parameterizations of the 
surfaces in Section 5. The results of our method are shown 
in Section 6. 

2 Bicubic Subdivision-Surface 
Wave I et s 

v v 

Subdivision surfaces are limit surfaces that result from re- 
cursive refinement of polygonal base meshes. A subdi- 
vision step refines a submesh to a supermesh by insert- 
ing vertices. The positions of all vertices of the super- 
mesh are computed from the positions of the vertices in the 
submesh, based on certain subdivision rules. Most sub- 
division schemes converge rapidly to a continuous limit 

Figure 2 Examples for index-free notation. The point Ff 
is the centroid of a face; Ve is the midpoint of an edge; Fe 
is the midpoint of the line segment defined by f vertices; 
V, is the centroid of all adjacent v vertices; and Fv is the 
centroid off vertices. 

surface, and a mesh obtained from just a few subdivi- 
sions is often a good approximation for surface rendering. 
Subdivision surfaces that reproduce piecewise polynomial 
patches can be evaluated in a closed form at arbitrary pa- 
rameter values [56]. 

There exists a variety of different mesh-subdivision 
schemes. We utilize Catmull-Clark subdivision [7], which 
generalizes bicubic B-spline subdivision to arbitrary topol- 

the average from those vertices of type x that correspond 
to adjacent primitives, i.e., adjacent vertices or incident 
edges or faces. Examples for the averaging operator are 
shown in Figure 2. 

To provide an example of the index-free notation, we 
formulate the Catmull-Clark subdivision rules in algorith- 
mic notation using the Zy operator: 

ogy. In this scheme, vertices in the supermesh correspond 
to faces, edges, or vertices in the submesh. In the follow- 
ing, we denote the corresponding vertex types as f, e, and 
v, respectively. All faces produced by Catmull-Clark sub- 
division are quadrilaterals. 

For our wavelet construction, we use the Catmull-Clark 
subdivision structure with slightly different subdivision 
rules. To describe subdivision rules that determine new 
vertex positions, we use an index-free notation. We use 
the averaging operator Zy , where x and y can represent f,  
e, or v. This operator returns for every vertex of type y 
the arithmetic average of all adjacent vertices of type x. 
If there are no direct neighbors of type x, then Ty returns 

1. f t Vf 

3. v t & (T, + 7, + (n, - 2)v) 
2. e c 3 (ve + Fe) (1) 

Here, n, denotes the valence of a vertex. The three rules 
are illustrated in Figure 3. The v vertices are initially de- 
fined by the coordinates given by a submesh. The first rule 
defines each f vertex to be located at the centroid of its cor- 
responding face. The second rule defines each e vertex to 
be the average of its edge midpoint V, and the midpoint Fe 
of the two adjacent f vertices. The third rule re-defines the 
position for each v vertex as a weighted sum of its neigh- 



Figure 3: Catmull-Clark subdivision rules (apply left to 
right) 

Figure 5: Lifted cubic B-spline wavelet. 

Figure 4 Wavelet decomposition coarsens a control poly- 
gon and stores difference vectors in place of removed ver- 
tices. 

boring f vertices, its adjacent submesh vertices Vv, and its 
own location. This vertex-modification step is performed 
simultaneously for all vertices. 

Subdivision rules like these define vertex modifications 
that are necessary to determine all supermesh coordinates 
for an individual subdivision step. For the next subdivision 
step, all vertices become v vertices again, and the same 
subdivision rules are applied recursively. 

2.1 Lifted One-Dimensional Wavelets 

Decomposition rules for a DWT are defined by two lin- 
ear operators, afim-ng operator F predicting the vertex co- 
ordinates for the coarser polygon, and a compaction-of- 
diflerence operator C representing the reduced details: 

v' = F(v,e) and 
e' = C(v,e). (2) 

Decomposition is recursively applied to a coarse poly- 
gon until a base resolution is reached. A DWT thus pro- 
vides a base polygon and all individual levels of detail 
that need to be added recursively to reconstruct an orig- 
inal polygon. An inverse DWT is defined by reconstmc- 
tion or synthesis rules that invert the decomposition rules. 
Starting with a base polygon, an inverse DWT applies re- 
construction rules recursively in reverse order of decom- 
position and thus adds more and more detail to a polygon. 
Reconstruction rules are defined by a subdivision operator 
S predicting the shape of a next finer control polygon and 
an expansion operator E providing the missing details: 

( z )  = S(v') + E(e'). (3) 

To obtain a smooth approximating curve, the recon- 
struction process can be terminated at any level of reso- 
lution providing a control polygon at an intermediate level 
of detail. The curve is obtained by applying the subdivi- 
sion operator S ad infinitum and assuming zero detail on 
all finer levels. In the case of B-spline wavelets, the opera- 
tor S reproduces in the limit a B-spline curve with uniform 
knot vector. A B-spline curve can be computed directly 
from a control polygon [23]. 

The reconstruction rules for a cubic B-spline wavelet 
transform can be defined in index-free notation as follows: 

1. v c v - ;Ev 

v c +v + ;Ev 
2. e t e + V e  (4) 
3. 

These three vertex modifications represent lifting opera- 
tions for the DWT. Lifting is used to define the shape 
of wavelets with certain properties, like vanishing mo- 
ments. The subdivision operator S is obtained from these 
reconstruction rules by assuming zero wavelet coefficients 
e'. Vertices of type e' and v' represent coefficients for 
wavelets and B-spline scaring firnctions, respectively. A 
cubic B-spline wavelet obtained from our construction is 
depicted in Figure 5. 

To construct the corresponding decomposition rules we 
invert the three individual lifting operations in reverse or- 
der. The decomposition rules are defined as: 

1. v t 2v - EV 

2. e t e - T e  (5) 
3. v c v + $ZV 

2.2 Wavelets on Polygon Meshes 
In the special case of a rectilinear mesh, a tensor-product 
DWT is defined by performing a one-dimensional DWT 
for all rows and then for all columns of the mesh. The 
corresponding tensor-product approach for the k t  lifting 
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Figure 6: Tensor-product lifting operation on a rectilinear 
grid. A one-dimensional lifting operation is applied first 
to the rows and then to the columns of a grid. 

Figure 7: Same tensor-product lifting operation as in Fig- 
ure 6, applied to arbitrary polygonal meshes. 

operation of the reconstruction rules (4), 

v t v - ;Ev (6) 

is illustrated in Figure 6. We note that the tensor-product 
lifting scheme also involves f vertices and that e vertices 
act like v vertices for exactly one direction. 

The fundamental observation that makes our lifting ap- 
proach possible is that th is tensor-product lifting operation 
can be computed by modifying e vertices and v vertices 
separately, see Figure 7. This formulation does not re- 
quire vertex valences to be four, and it is thus applicable 
to arbitrary polygonal base meshes. A generalized tensor- 
product lifting operation for equation (6) is defined by the 
rules 

e t e - $Fe 
v t v - &Tv - ;Ev (7) 

Due to the averaging operators, the total weight added to 
an individual vertex remains independent of its valence. 
This property ensures that the shapes of basis functions 
near extraordinary points are close to the shapes of corre- 
sponding basis functions on regular domains. 

Analogously to the first reconstruction rule in (4) the 
two remaining rules can be generalized to arbitrary polyg- 
onal meshes. This is the entire set of reconstruction rules 
for the lifted generalized bicubic DWC 

1. 
2. 
3. e t e + V e  
4. f t f - Vf + 2Ef 

5. e t $e + $Te 
6. v t av - iF,, + Ev. 

e t e - ;Te - 
v t v - &fv - ;Ev 

(8) 

This reconstruction formula defines linear subdivision and 
expansion operators, given by 6) = S(v’) + E(e’,P). (9) 

On a rectilinear grid, the subdivision operator S repro- 
duces bicubic B-splines (scaling functions) as limit sur- 
faces when no detail is added, i.e., when all wavelet co- 
efficients e’ and f’ are zero. On arbitrary polygonal 
base meshes, the subdivision scheme behaves similar to 
Catmull-Clark subdivision. 

The corresponding decomposition rules are defined by 
inverting the rules (8) in reverse order: 

1. v t 4v + Fv - 4Ev 

2. e t 2e - Te 
3. f t f + Vf - 2Ef 
4. e t e - T e  

5. 
6. 

(10) 

v t v + $Fv + $Ev 
e t e + ;Fe 

In analogy to equation (2), these decomposition rules de- 
fine linear fitting and compaction-of-difference operators, 
given by 

v‘ = F(v,e,f) and 

Our DWT is now applied as follows: a polygonal base 
mesh defining a surface topology is recursively subdi- 
vided using Catmull-Clark subdivision structure until a 
prescribed resolution is obtained. A mapping between the 
fine mesh and the geometry that needs to be represented 
is established. Coordinates for each mesh vertex are esti- 
mated so that the fine mesh (and the limit surface obtained 
by S) approximates the geometry closely. The actual input 
for our DWT is a hierarchical mesh structure with associ- 
ated vertex coordinates at the finest subdivision level. De- 
composition rules (10) are applied recursively from fine to 
coarse until the base mesh is obtained. The latter now con- 
tains control points for the geometry at coarsest resolution. 
The wavelet coefficients Corresponding to vertices on any 
finer subdivision level contain surface details. A control 
mesh represents, at any resolution, a smooth generalized 
bicubic B-spline surface. 

2.3 Boundary Curves and Feature Lines 
Boundary curves and sharp feature lines need to be treated 
differently in the wavelet scheme in order to avoid a large 
number of non-zero wavelet coefficients and to predict 
coarser levels of resolution more precisely. Feature lines 
for subdivision surfaces were described for by by DeRose 
et aZ.[14]. Boundaries and features correspond to marked 



edges in the base-mesh that are subdivided like B-spline 
curves defined by v- and e vertices. It is also possible to 
define sharp vertices that cannot be modified by any sub- 
division rule. (To improve the surface quality in the neigh- 
borhood of sharp vertices, adjacent edges are treated like 
sharp edges.) 

To handle sharp edges and vertices correctly, our subdi- 
vision operator S must apply one-dimensional subdivision 
rules for all v and e vertices belonging to sharp edges and 
it must not modify sharp vertices. Therefore, our recon- 
struction rules (8) need to be modified in the following 
way: 

For any e vertex located on a sharp edge or belonging 
to an edge with a sharp vertex, the first and fifth rules 
are ignored. 

For any sharp v vertex, the second and sixth rules are 
ignored. 

For any v vertex that has incident sharp edges and 
that is not sharp itself, the second and sixth rules are 
replaced by 

2. v c v - isv and 6. v c frv + +Ev. 

For both rules, the average E,. is computed from only 
those e vertices that correspond to sharp edges. 

The decomposition rules (8) are modified analogously. 
Our subdivision scheme generates polynomial patches 

satisfying C2-continuity constraints in all regular mesh re- 
gions. Except for extraordinary points, all surface regions 
become regular after a sufficient number of subdivisions. 
Around every extraordinary point there is an infinite num- 
ber of smaller and smaller patches. However, it is possible 
to compute the limit-surface efficiently at arbitrary param- 
eter values based on eigenanalysis of subdivision matrices 
1561. 

3 Shrink-wrapping Large Isosur- 

Before subdivision-surface wavelet compression can be 
applied to an isosurface, it must be re-mapped to a mesh 
with subdivision-surface connectivity. Minimizing the 
number of base-mesh elements increases the number of 
levels in the wavelet transform, thus increasing the poten- 
tial for compression. Because of the extreme size of the 
surfaces encountered, and the large number of them, the 
re-mapper must be fast, work in parallel, and be entirely 
automated. The compression using wavelets is improved 
by generating high-quality meshes during the re-map. For 
this, highly smooth and non-skewed parameterizations re- 
sult in the smallest wavelet coefficient magnitudes. 

The algorithm for this shrink-wrapping is an elaboration 
of the method described in [2]. That method was used to 
demonstrate wavelet transforms of complex isosurfaces in 

a non-parallel, topology-preserving setting. The algorithm 
takes as input a scalar field on a 3D mesh and an isolevel, 
and provides a surface mesh with subdivision-surface con- 
nectivity as output, i.e. a collection of logically-square 
patches of size (2* + 1) x (2n + 1) connected on mu- 
tual edges. The algorithm at the high level is organized in 
three steps: 

Signed distance transform: for each grid point in the 
3D mesh, compute the signed-distance field, i.e. the 
distance to the closest surface point, negated if in the 
region of scalar field less than the isolevel. Starting 
with the vertices of the 3D mesh elements contain- 
ing the isosurface, the transform is computed using a 
breadth-first propagation. 

Determine base mesh: To preserve topology, edge- 
collapse simplification is used on the full-resolution 
isosurface extracted from the distance field using con- 
ventional techniques. This is followed by an edge- 
removal phase (edges but not vertices are deleted) 
that improves the vertex and face degrees to be as 
close to four as possible. 

Subdivide and fit: The base mesh is iteratively fit and 
optimized by repeating three phases: (1) subdivide 
using Catmull-Clark rules, (2) perform edge-length- 
weighted Laplacian smoothing, and (3) snap the 
mesh vertices onto the original full-resolution surface 
with the help of the signed-distance field. Snapping 
involves a hunt for the nearest fine-resolution surface 
position that lies on a line passing through the mesh 
point in an estimated normal direction of the shrink- 
wrap mesh. The estimated normal is used, instead of 
the distance-field gradient, to help spread the shrink- 
wrap vertices evenly over high-curvature regions. 
The signed-distance field is used to provide Newton- 
Raphson-iteration convergence when the snap hunt is 
close to the original surface, and to eliminate nearest- 
position candidates whose gradients are not facing in 
the directional hemisphere centered on the estimated 
normal. Steps 2-3 may be repeated several times after 
each subdivision step to improve the quality of the pa- 
rameterization and fit. In the case of topology simpli- 
fication, portions of surface with no appropriate snap 
target are left at their minimal-energy position deter- 
mined by the smoothing and the boundary conditions 
of those points that do snap. Distributed computation 
is straightforward since all operations are local and 
independent for a given level of resolution. 

The shrink-wrap process is depicted in Figure 1 for ap- 
proximately .016% of the 460 million-triangle Richtmyer- 
Meshkov mixing interface in topology-preserving mode. 
The original isosurface fragment contains 37,335 vertices, 
the base mesh 93 vertices, and the shrink-wrap result 
75,777 vertices. 



Figure 8: Before (left) and after the remapping for triangle bintree hierarchies. Tangential motion during subdivision is 
eliminated. 

4 Surface Fitting 

Using the wavelet construction described previously, we 
can efficiently compute detail coefficients at multiple lev- 
els of surface resolution when a base mesh and control 
points on the finest subdivision level are given. In order 
for the transform to apply to an arbitrary input surface, the 
surface must be re-mapped to one with subdivision con- 
nectivity. In this section we introduce an efficient algo- 
rithm to construct base meshes and to subdivide and fit 
them to an isosurface. Our approach begins with the high- 
resolution, unstructured triangulation obtained by conven- 
tional contour extraction methods. This triangulation is 
simplified to form an initial coarse base mesh, which we 
subsequently subdivide and shrink-wrap to fit the input tri- 
angulation with a smoothly-parameterized mapping that 
helps minimize wavelet coefficient magnitudes and thus 
improves compression efficiency. 

We construct a initial base mesh by performing a vari- 
ant on edge-collapse simplification due to Hoppe [30], 
followed by an additional pass that removes some edges 
while keeping the vertices fixed. This class of simpli- 
fication method works on triangulations (manifold with 
boundary), and preserves the genus of the surface. We 
constrain the simplification to produce polygons with 
three-, four- and five-sided faces, and vertices of valences 
from 3 to 8. These constraints result in higher quality map- 
pings and compression efficiency, since very low or high 
degree vertices and faces cause highly skewed or uneven 
parameterizations in the subsequent fitting process. 

The error function used in our mesh-collapse algorithm 
is simpler than previous methods and does not require 
evaluating shortest distances of a dense sampling of points 
to the finest mesh every time an edge is updated. It was 
demonstrated by Lindstrom and Turk [39] that memory- 
less simplification can provide results excellent results but 
without expensive metrics computed with respect to the 
original fine mesh. 

The priority for an edge collapse is computed as fol- 
lows. Let ci be the vectors obtained by taking cross prod- 
ucts of consecutive vectors associated with the ring of 
edges adjacent to the new vertex after collapse. Then 
ni = ci/llcills are the unit normals to the triangles form- 
ing a ring around the new vertex. The unit average normal 

is n = l /kCi=o k-1 ni. The error introduced by an edge 

collapse is estimated by 

where d = v j  - vi. In order to allow priority distinctions 
in skewedtangled planar neighborhoods, we clamp AEo 
to a small positive value by AE1 = max{AE,, lo-*}. 
Errors in higher-curvature or tangled neighborhoods are 
emphasized by a weighting factor, giving the final delta in 
error energy as 

We keep an estimate of accumulated error for each edge 
neighborhood, Eacc. The original edges are initialized 
with zero accumulated error. The total error for an edge 
is defined as 

(3) 

When an edge is collapsed, the accumulated error for any 
edge adjacent to the new vertex is set to the maximum of 
its previous value Eacc and the values E for the five old 
edges destroyed by the collapse. The priority of a collapse 
is given by log(l/E). This value is discretized, for ex- 
ample, to about lo5 buckets within a maximum expected 
range of [log log to give a bucket index. 

Upon collapse, a neighborhood of nearby edges must 
have their legality markings and priorities updated. These 
edges are: (a) those adjacent to the new vertex or to the two 
old vertices remaining from the triangles that collapsed to 
edges, and (b) the ring of edges formed between consecu- 
tive outer endpoints of the edges in (a). 

To improve the vertex and face valences of the base 
mesh, we delete some edges that satisfy certain con- 
straints, in a priority-queue order. An edge is eligible for 
deletion if its incident vertices both have valences at least 
four, and if the resulting merged face has no more than 
five sides. Sharp edges are never eligible for deletion. If 
the unit normals of the faces on either side of the edge have 
a dot product less that a specified threshold, for example 
.5, then we also make the edge ineligible for removal. The 
priority for removal is formulated to be higher when the 



new face has four sides, when the two faces beiig com- 
bined have similar normals, and when high-valence ver- 
tices (valence > 4) are on the ends. Removal priority is 
lower when the new face has more than four sides, when 
the two combining faces have disparate normals, and when 
the edge’s vertices have valence 4. 

4.1 lsosurface Fitting 
Given the initial base mesh from the edge collapse and 
removal procedures, a refinement fitting procedure is 
the final step in converting the contour surface to have 
subdivision-surface connectivity, a fair parameterization, 
and a close approximation to the original unstructured ge- 
ometry. Our method is inspired by the shrink-wrapping 
algorithm by Kobbelt et al.[37], which models an equilib- 
rium between attracting forces pulling control points to- 
wards a surface and relaxing forces minimizing paramet- 
ric distortion. We iterate the attractionhelaxation phases a 
few times at a given resolution, then refine using Catmull- 
Clark subdivision, repeating until a desired accuracy or 
resolution is attained. Relaxation is provided by a sim- 
ple Laplacian averaging procedure, where each vertex is 
replaced by the average of its old position and the centroid 
of its neighbor vertices. Relaxation for a vertex adjacent 
to two sharp edges only weights the adjacent vertices on 
those edges. Sharp vertices are not relaxed. The remain- 
der of this section describes the attraction method. 

For attraction, vertices are moved to the actual isosur- 
face along a line defined by the unit average normal of 
the faces adjacent to the vertex in the current shrink-wrap 
mesh. The location chosen along this line is determined 
by use of a signed-distance field for the original contour 
surface. We choose the current-mesh normal direction to 
ensure that samples spread evenly over the surface, es- 
pecially for high-curvature features. The even spread is 
facilitated by the mesh relaxation procedure. The signed- 
distance field is used to help locate the best attraction point 
because it is a reliable indicator of which way to move and 
how far, and can help disambiguate between near isosur- 
face locations by selecting the one facing a direction that 
most agrees with the mesh normal. The scalar field itself, 
while available a no additional space or time cost, is gen- 
erally not reliable for these things. We move to the nearest 
isosurface along the mesh-normal line that has a contour 
normal facing in the same direction (the dot product of the 
two normals is positive). If the distance to this location 
is greater that a specified threshold, then the point is left 
where it was until further iterationdrefinements provide a 
sensible target location. 

If the scalar field is defined on a regular hexahedral grid, 
we use the same grid for the signed-distance function. The 
sign for our distance function can be obtained from the un- 
derlying scalar field while estimating the distance to the 
isosurface involves more work. Our algorithm creates a 
breadth-first queue of “updated” nodes in the grid, initial- 
ized to include the grid nodes for cells containing isosur- 

face, using the the isolevel, scalar value and scalar-field 
gradient to estimate these initial distances. Each queue 
entry contains the node index and coordinates of the clos- 
est surface point found so far for that node. The first entry 
on the queue is removed, and al l  its neighbors are checked 
to see if they need to be updated. A neighbor is updated 
if the removed nodes closest point is closer that its clos- 
est point. Updating involves replacing the coordinates of 
the closest point, placing the neighbor at the end of the 
queue, and storing the new distance in the distance field 
for the neighbor’s node. The queue processing continues 
until the queue is empty. Typically each node gets updated 
only a few times, resulting in very fast computation of the 
signed-distance field. 

We note that an isosurface of a signed-distance function 
will have slight differences from the original extracted iso- 
surface, hence the fitting process wil l  converge to a slightly 
different surface than may be desired. This can be op- 
tionally corrected after fitting, by moving the vertices in 
the scalar-gradient direction to the exact isosurface. This 
is possible after the fitting process because the points are 
within a fraction of a cell width from the exact surface and 
the scalar field is reliable when in that proximity. 

5 Re-Mapping 

The Realtime Optimally Adapting Meshes (ROAM) al- 
gorithm typically exploits a piecewise block-structured 
surface grid to provide efficient selective refinement for 
view-dependent optimization. A triangle bintree structure 
is used. This consists of a hierarchy of logically right- 
iscoceles triangles, paired across common base edges at 
a uniform level of subdivision. A simple split operation 
bisects the common base edge of such a pair, turning the 
two right-isosceles triangles into four. Merging reverses 
this operation. This is depicted in Figure 9. 

Figure 9: Split and merge operations on a bintree triangu- 
lation. A typical neighborhood is shown for triangle T on 
the left. 

The shrink-wrapping process that we have described 
produces meshes that are technically in this form, but 
cause large tangential motions of the mapping during re- 
finement even in regions of flat geometry. To correct for 
this, we have devised a new remapping algorithm that 



eliminates tangential motion altogether whenever possible 
during ROAM refinement, but never causes the mapping to 
become degenerate or ill-defined. In effect, the surface is 
defined by a series of neighborhood height (normal) maps, 
allowing details to be stored with a single scalar rather than 
a 3-component displacement vector. Our method is simi- 
lar to the independent work of Guskov et al. [28], differ- 
ing primarily in the driving goal (efficient view-dependent 
optimization with crude wavelet compression in our case) 
and the details of mesh structure, subdivision scheme sup- 
ported, intersection acceleration an so on. 

The normal-remapping works from coarse to fine res- 
olutions, remapping a complete uniform level of the hi- 
erarchy at once. The vertices of the base mesh are left 
fixed at their original positions. For every edge-bisection 
vertex formed in one subdivision step, estimated normals 
are computed by averaging the normals to the two trian- 
gles whose common edge is being bisected. For every 
vertex that has been remapped, its patch and parameter 
coordinates in the original map are kept. During edge bi- 
section, the parametric midpoint is computed by topologi- 
cally gluing at most two patches together from the original 
mesh, computing the mid-parameter values in this glued 
space, then converting those parameters back to unglued 
parameters. Given the constraints on our procedure, it is 
not possible for bisecting-edge endpoints to cross more 
than one patch boundary. A ray-trace intersection is per- 
formed from the midpoint of the line segment beiig bi- 
sected, in the estimated normal direction. Since we ex- 
pect the intersection to be near the parametric midpoint in 
most cases, it is efficient to begin the ray intersection tests 
there for early candidates. Since the surface being ray- 
traced stays fixed throughout the remapping, the construc- 
tion of typical ray-surface intersection-acceleration struc- 
tures can be amortized and overall offer time savings (re- 
ducing the time from O(Nlog(N)) to O ( N )  for N mesh 
vertices). Interval-Newton and finally Newton-Raphson it- 
erations can be performed for the final precise intersection 
evaluation. Intersections are rejected if they are not within 
a parametric window defined by the four remapped ver- 
tices of the two triangles being split, shrunk by some fac- 
tor (e.g. .5) around the parametric midpoint. The closest 
acceptable intersection is chosen. If none exist or are ac- 
ceptable, the parametric midpoint is chosen. 

The result of remapping is shown in Figure 8 for a 
test object produced by Catmull-Clark subdivision with 
semi-sharp features. The original parameterization on the 
left is optimal for compression by bicubic subdivision- 
surface wavelets, but produces extreme and unnecessary 
tangential motions during triangle-bintree refinement. The 
remapped surface, shown on the right, has bisection- 
midpoint displacements (“poor man’s wavelets”) of length 
zero in the flat regions of the disk, and displacements of 
minimized length elsewhere. We note that while the main 
motivation for this procedure is increasing accuracy and 
reducing the “pops” during realtime display-mesh opti- 
mization, the typical reduction to a single scalar value of 

the displacement vectors (wavelet coefficients) gives a fair 
amount of compression. This is desirable when the re-map 
from highquality wavelet parameterization and compres- 
sion is too time-consuming such as on the client end of the 
server-client asynchronous dataflow described earlier. 

We note that the ROAM algorithm naturally requires 
only a tiny fraction of the current optimal display mesh 
to be updated each frame. Combined with caching and the 
compression potential of the remapping, this promises to 
provide an effective mechanism for out-of-core and remote 
access to the surfaces on demand during interaction. 

6 Results 
To demonstrate the performance of our algorithm, we have 
extracted an isosurface from a block of a high-resolution 
turbulent-mixing hydrodynamics simulation 1461, con- 
verted it into our surface representation and displayed dif- 
ferent levels of resolution. Staaing with a block of 256 x 
256 x 384 samples, we have constructed an isosurface 
mesh composed of 976,321 vertices. This mesh has been 
simplified to a base mesh with only 19,527 vertices. We 
have used three subdivision steps for the shrink-wrapping 
process and obtained a fine-resolution mesh composed of 
1,187,277 vertices, which corresponds to the total number 
of control points and wavelet coefficients. We obtained 
computation times of 12 minutes for base mesh genera- 
tion, about one minute for the shrink-wrapping step, and 
30 seconds for computing the wavelet transform on a 250 
h4Hz MIPS RlOOOO processor. 

I Numberof I Percent of I RMSE [%I I 
~~ 

coefficients I fullresolution I 
237,490 I 20.0 I 7.6 
118,728 
59,364 I 19.527 I 10.0 20.5 

5.0 
1.6 

Table 1: Root mean square errors in percent of edge length 
of volume cell for reconstructions from subsets of coeffi- 
cients. 

Assuming that the control points of the shrink-wrap@ 
mesh interpolate the isosurface, we can estimate the root 
mean square enor (RMSE) for a mesh reconstructed from 
only a subset of coefficients by using differences between 
control points at finest resolution. Error estimates are 
shown in Table 1. The errors are computed in percent of 
the edge length of one volume cell. The main diagonal 
of the entire block is about 528 edge lengths. The coars- 
est resolution possible can be obtained by reconstruction 
from the base mesh, which corresponds to 1.6 percent of 
the full resolution. We note that every wavelet coefficient 
is a vector-valued quantity with three components. 

Figure 10 shows the base mesh with interpolating con- 
trol points and different levels of resolution from two dif- 



ferent points of view. All figures are rendered at a mesh 
resolution corresponding to three subdivision levels (same 
resolution as obtained from shrink-wrapping) using flat 
shading. 

7 Conclusions 
Several pieces of the this strategy have been realized to 
date, but many challenges remain to create a full capabil- 
ity: 

1. For topology-preserving simplification, the inher- 
ently serial nature of the queue-based schemes must 
be overcome to harness parallelism. 

2. Transparent textures or other means must be devised 
to handle the un-mapped surface regions resulting 
from topology-simplifying shrink wrapping. 

3. The shrink-wrapping procedure can fail to produce 
one-to-one, onto mappings in some cases even when 
such mappings exist. Perhaps it is possible to revert 
to expensive simplification schemes that carry one- 
to-one, onto mappings only in problematic neighbor- 
hoods. 

4. Shrink-wrapping needs to be extended to produce 
time-coherent mappings for time-dependent surfaces. 
This is a great challenge because of the complex evo- 
lution that surfaces go through during physics simu- 
lations. 
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